
1

Version 2 January 2022. N2X3

Instruction sets of the English Electric KDN2, KDF6 and KDF7 computers.

Descriptions of the instruction sets are presented in sequence, with each of the three
computers appearing on a new page.

The KDN2 Instruction Set.

The KDN2 has a single-address instruction format. Of the 18-bit instruction, six bits
are employed for the op code (giving a theoretical maximum of 64 functions) and 12
bits are used to specify the operand address in the core store. The ferrite core
primary store was expandable in increments of 512 18-bit words up to a maximum of
4,096 18-bit words.

The usual add, subtract, multiply and divide operations are provided. There are both
arithmetical and logical shift instructions. Three types of control transfer instructions
are provided: unconditional jumps, jump if zero, jump depending upon the sign of the
operand.

At the time of writing, English Electric documentation describing the full instruction
set has not been discovered.

Here are some sample instruction times:

Add/subtract and logical ops 175 microsecs. (18-bit aithmetic)
Jump 42 microsec.
Instruction modify: 168 microsec.
Multiplication: average: 2.75 millisecs., maximum 5 millisecs.
Divide 5 millisec.
Input/output: 91 microsecs. per 6-bit character.

The English Electric DEUCE Alphacode was also made available for the KDN2
computer.

2

The KDF 6 Instruction Set.

The description below is based on the English Electric brochure KDF 6
Programming, as transcribed by Andrew Herbert in his KDF 6 article in Resurrection,
number 89, Spring 2020.

The KDF 6 had a main store of 24K 18-bit words and four registers named
A, B, C, D. Registers A and B can be concatenated as an extended register
called X. A word could be interpreted as an integer, or as three six-bit characters
(“triads”). In machine code an instruction was represented by two octal digits (six bits
– allowing for 32 instruction codes) for the function code and four octal digits
addressing an operand in main store (12 bits – allowing for 4096 locations).

 Octal Mnemonic Interpretation; comments.

00,01 CALL, SEND Input / Output

02,04,
06,
03,05,
07

MOP B, MOP C,
MOP D,
MOM B, MOM C,
MOM D

The contents of the designated register are added
to (MOP) or subtracted from (MOM) the operand
and executed as an instruction

10,12,
14,16,
11,13,
15,17

SET A, SET B,
SET C, SET D,
STR A, STR B,
STR C, STR D

SET fetches the operand to the register
STR copies the register into the operand address

20,22,
24,26,
21,23,
25,27

ADD A, ADD B,
ADD C, ADD D,
SUB A, SUB B,
SUB C, SUB D

Add the operand to the register / subtract the
operand from the register

30,32,
34,36,
31,33,

NEV A, NEV B,
NEV C, NEV D,
AND A, AND B,
AND C, AND D

bitwise not equivalent of register and operand to
register, bitwise logical and of register and
operand to register

40,42,
44,46,
41,43,
45,47

SHL A, SHL B,
SHL C, SHL D,
SHR A, SHR B,
SHR C, SHR D

shift register left/right by number of places
specified in operand field. SHR A and SHR D are
arithmetic shifts, SHR B and SHR C are logical
shifts

50,52,
54,56,
51,53,
55,57

JNZ A, JNZ B,
JNZ C, JNZ D,
JNN A, JNN B,
JNN C, JNN D

Jump to operand address if register is non-zero,
non-negative and continue

60,62,
64,66,
61,63,
65,67

INC A, INC B,
INC C, INC D,
DEC A, DEC B,
DEC C, DEC D

Increment / decrement operand in store and copy
result to register

70
71

SHL X,
SHR X

shift contents of extended register X up or down
by operand field places. SHR X is arithmetic

3

The instruction times are relatively slow:

Function codes (op codes) can be written in octal, or as the mnemonics given above.

The operand field can be:

 Absolute, i.e., a decimal or octal number e.g., ADD ,100
 Relative to the address of the instruction e.g., JUMP *-8
 Symbolic: relative to a label, e.g., JUMP R4/-2

The brochure KDF 6 Programming is not explicit about addressing, although the
term “core module” appears from time to time in the documents but is undefined. It
could be that operand addressing is absolute in the range 0-4095, relying on
MOP/MOM instructions to access higher regions of store, or possibly relative to the
module in which the program is executing.

72
73

ADD X,
SUB X

Add/subtract unsigned contents of operand field
to/from extended register X

74 DVDE Divide X by C putting quotient in B and remainder
in A. Operand field specifies number of places of
division required

75 MULT Multiply C by B putting result in X. The operation
field the number of cycles of multiplication
(normally 18). If A is non-zero before the
operation its contents are added into the result

76 JUMP Jump to the operand address and continue

77 HOLD Jump to the operand address and halt.

MOM, MOP 168µs + instruction obeyed

SET 175µs

STR 196µs

ADD, SUB 175µs

ADD X, SUB X 301µs

MULT 2750µs (average)

DVDE 5222µs (average)

NEV, AND 175µs

SHL, SHR 35+7Y µs (Y=number of places to shift)

JNZ, JNN, JUMP 42µ

JNZ, JNN, JUMP 196µs

4

Input/output to slow devices is directly through registers, character by character. For
fast devices, block transfers can be set up from buffers in the second core module and
program execution will continue in parallel with data transfer. Only one block transfer
may be in process at the time and there are no facilities for multi-programming (i.e.,
interrupts). The block transfer facility is provided by library subroutines and the KDF 6
User Code provides special mnemonics to set up calls to these routines.

Somewhat mysteriously, the brochure says: “Data areas: any triad in a data area
may be addressed by a symbolic address followed consisting of a minuscule
followed by a decimal number. Data areas must be defined by directives at the
beginning of the program”.

Labels can be:
1. Reference labels (in the main program)
2. Subroutine reference labels (for references to subroutines)
3. Entry point labels (for defining entrances to subroutines from the main

program)
4. V-Labels (for internal references within subroutines
5. Symbolic labels (these enable subsequent instructions and groups of

constants to be treated as data areas).
6.

Unfortunately, there are no examples in the brochure to reveal the syntax of each
label type.

5

The KDN7 Instruction Set.

At the time of writing, no English Electric technical manuals have come to light that
give details of the KDF7’s internal register layout and instruction repertoire. Until
fresh evidence comes to light, it might be assumed that the KDF7 was an upgraded
version of the KDN2 computer.

