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1. Historical background to the English Electric DEUCE. 
DEUCE was the production version of a research prototype called the NPL Pilot ACE, 
which was developed at the National Physical Laboratory, Teddington, between 1945 and 
1950.  It was called Pilot because it was seen at the time as a reduced-facility version of 
Alan Turing’s original design for a larger computer named ACE, the Automatic Computing 
Engine. 
 
Alan Turing OBE, FRS, (1912 – 1954), was a famous mathematician.  He had published a 
classic paper entitled On Computable Numbers, with an application to the 
Entscheidungsproblem in 1936 whilst still a post-graduate student at the University of 
Cambridge – (see section N1X5, reference 1). On Computable Numbers was Turing’s 
attempt to tackle one of the important philosophical and logical problems of the time: Is 
mathematics decidable?  In order to reason about this so-called Entscheidungsproblem, 
Turing had the idea of using a conceptual, automatic, calculating device.  The ‘device’ was 
a step-by-step process – more a thought-experiment, really – that manipulated symbols 
according to a small list of very basic instructions.  The working storage and the 
input/output medium for the process was imagined to be an infinitely long paper tape that 
could be moved backwards and forwards past a sensing device.   
 
It is now tempting to see Turing’s mechanical process as a simple description of a modern 
computer.  Whilst partly true, Turing’s Universal Machine was much more than this: it was 
a logical tool for proving the decidability, or undecidability, of mathematical problems.  As 
such, Turing’s Universal Machine continues to be used as a conceptual reference by 
theoretical Computer Scientists to this day. Certainly, it embodies the idea of a stored 
program, making it clear that instructions are just a type of data and can be stored and 
manipulated in the same way. 
 
After some brilliant war-time work on code-breaking at Bletchley Park, Alan Turing arrived 
at NPL on 1st October 1945.  He was employed in the NPL Mathematics Division 
specifically to design an electronic universal computing machine. By the end of 1945, in 
the remarkably short time of three months, Turing had finished his first NPL report.  It was 
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entitled Proposed electronic calculator – (see section N1X5, reference 2).  Historians now 
judge it to be the first substantially complete description of a practical stored-program 
computer.  The typewritten document was very detailed, running to the modern equivalent 
of 83 printed pages including 25 pages of diagrams.  It was what we would now call a 
register-level and system-level description, rather than a precise engineering design, 
though it did contain sample electronic circuits. 
 
Alan Turing’s 1945 report makes reference to another seminal document, written in 
America in June 1945 and entitled First draft of a report on the EDVAC.  EDVAC 
(Electronic Discrete Variable Automatic Computer) was a widely-circulated proposal for a 
stored-program universal electronic computer, written by the Princeton mathematician 
John von Neumann – (see section N1X5, reference 3).  Alan Turing’s 1945 report at NPL 
uses the same basic notation and terminology as the EDVAC report.  In the light of 
hindsight, we now judge von Neumann’s report to be less complete and less general-
purpose, placing more emphasis on a computer as a numerical calculator intended for 
scientific applications.  In contrast, Turing’s report described a more complex and more 
flexible machine, indicating a much wider range of applications. 
 
Soon Alan Turing’s proposed computer had been named ACE.  Then over the period mid-
1946 to mid-1947 more NPL staff were assigned to the ACE project. However, due to 
many internal NPL factors, the practical construction of the Pilot model of ACE did not get 
under way at NPL until early in 1949.  Meanwhile in September 1947 Alan Turing, perhaps 
disillusioned with the lack of progress, went on a year’s leave of absence to Cambridge 
University. He eventually resigned from NPL and joined the Mathematics Department of 
Manchester University in October 1948.  In Turing’s absence, Jim Wilkinson headed the 
Pilot ACE project at NPL.  The Pilot ACE first ran a program on 10th May 1950 – (see 
section N1X5, reference 4).   
 
Engineers from the English Electric Company had been seconded to the Pilot ACE project 
in 1949.  It was thus natural that the company should take the basic design, make a 
number of minor improvements, and produce a commercially-available version.  This was 
called DEUCE – (see section N1X5, reference 5).  33 DEUCE computers were delivered 
between 1955 and 1960, of which 12 remained within English Electric where they were put 
to work on a range of engineering problems and computing bureau activity.  In this, they 
benefited from the numerical algorithms and software already developed by the 
Mathematics Division at NPL. 
 
DEUCE went through various phases of upgrading. The successive models were called 
the Mark 0, Mark I, Mark II and Mark IIA. By September 1961 there were believed to be 
two Mark 0, 19 Mark 1, five Mark 2 and four Mark 2A DEUCE machines in service. 
 
 
 
 
 
2. Architectural overview of Pilot ACE and DEUCE. 
A general comparison of the original Pilot ACE and the original DEUCE is shown in Table 
2.1. 
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 NPL Pilot ACE, as at May 1950 English Electric DEUCE, 
as at 1955 

Word length, bits – see note (a) 32 32 

Instruction length, bits 32 32 

Instruction format 2 + 1 2 + 1  

Instruction set: number of ops, 
See note (b) 

Approx. 28 Approx. 30 

Primary store size, words – see  
note (d) 

128 402 

Primary store type – see note (c) Mercury delay lines Mercury delay lines 

Secondary store size, words - 8K 

Secondary store type - Drum 

ADD time, min., millisecs. 
ADD time. max., millisecs. 

0.064 
1.064 

  0.064 
  1.064 

MULTIPLY time, min., millisecs. 
MULTIPLY time, max., millisecs. 

2 
3 

    2 
    3 

Digit period, microseconds 1 1 

Main type of vacuum tube ECC81 (12AT7) double triode similar 

Approx. number of vacuum tubes  
(including thermionic diodes) 

Approx. 1000 1,450 

Input medium Card reader (CDR) Card reader (CDR) 

Output medium Card punch (CDP) 
 

Card punch (CDP);  
printer 

Approx. cost of a production model - £42,000 - £50,000 

 
Table 2.1.  General comparison of the Pilot ACE and DEUCE computers. 
 
Notes for Table 2.1. 
(a) Word length: specific hardware support was given for double-length (64 bit) 

arithmetic – (see section N1X3).  
(b) This is the number of effective distinct operations, as would be recognised by a 

modern programmer. The actual instruction lay-out would look strange to modern 
eyes – (see below).  There was no single explicit accumulator, nor was there an 
index register (B register) for address-modification. For the English Electric DEUCE, 
a facility called Automatic Instruction Modification (AIM) was added in 1957 as an 
upgrade. Neither the Pilot ACE nor DEUCE had floating-point hardware. 

(c) The choice of delay line for the primary memory affected instruction times in the 
following manner. When a computer obeyed instructions directly from a delay line 
store, access-time was affected by the address of the instruction or operand relative 
to the current position of information circulating in the store.  That is to say, access 
to primary memory was sequential and not (as in the case of a modern computer) 
random as in RAM.  Thus, minimum and maximum times are quoted in the Table 
for the ADD and MULTIPLY instructions.  For both the Pilot ACE and DEUCE, the 
instruction format allowed the address of the next instruction to be specified.  So-
called optimum programming (or minimum latency) techniques were used to try and 
keep execution times as close to the minimum as possible.   

(d) The first production version of DEUCE had 402 words of ‘quick-access’ storage, 
arranged as: 12 long lines of 32 words, 4 lines of 1, 3 lines of 2, 2 lines of 4 words.  
In DEUCE Mark IIA seven extra long lines were added, giving a total capacity 
increased from 402 to 626 words. 
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3. Tutorial on the Pilot ACE instruction set and architecture. 
Since Alan Turing’s original notation and the design of both the Pilot ACE and DEUCE are 
difficult for the modern computer user to understand. It is helpful to give an explanatory 
tutorial.  We first give the Pilot ACE’s instruction set in its original form, then derive a set of 
modern equivalents for the main facilities and finally produce a register-level diagram that 
is useful for an understanding of both ACE and DEUCE. 
 
The format of a Pilot ACE instruction is as follows: 
 
2      3  5 bits  5 bits       2       5 bits         3     5 bits      1     1 

U NIS   Source      Destin Ch      Wait      U   Timing U Go 

0 2  4 5              9 10          14  17          21 22    24 25         29 30 31 

Least sig                  most sig 
 
U:   unassigned 
N    NIS:   next Instruction Source: indicates long delay line number (1 -> 7) 
S    Source:  number of selected source 
D    Destination: number of selected destination 
C    Characteristic: gives length of transfer 
W    Wait number: gives first minor cycle of transfer 
T    Timing number: gives minor cycle of next instruction 
G   Go digit:  If G = 0, wait for handkey to be pressed; if G = 1, full speed ahead. 
 
A minor cycle is equivalent to a word, ie to 32 digit-periods.  A digit-period is one 
microsecond.  W and T are specified in terms of minor cycles.  A description of their 
purpose is postponed to section N1X3. 
 
To the modern programmer, it might at first sight appear that the Source and Destination 
digits in a Pilot ACE instruction simply specify the location of operands that take part in 
computational operations.  The actual story is not so simple – if only because there seem 
to be no op code or function bits in the instruction to specify which operation is to be 
performed.  In fact, some source-numbers and some destination-numbers have implicit 
functions associated with them. 
 
The full story is that the Source and Destination digits are actually used for several 
purposes: 
 to specify one of eleven 32-word delay lines (DL) that form the main memory; 
 to specify one of five single-word delay lines, called temporary stores (TS); 
 to specify one of two double-length delay lines, called DS12 and DS14; 
 to specify an arithmetic or logical function; 
 to specify one of five hard-wired constants, called P1, P17, P32, zero and ones.. 
 
This picture is further complicated by the fact that the Pilot ACE design evolved over the 
period 1946 – 1949.  The final notation and numbering system reflect the many changes 
that took place and may appear somewhat confusing. 
 
To aid the modern programmer in an initial understanding the Pilot ACE, Table 2.2 given 
below re-interprets the original source and destination numbers in today’s terminology.  
The Table uses the following modern concepts and abbreviations: 

Mn = main memory line n, ie the nth of eleven 32-word delay lines 
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Rn = central register n, ie the nth of five one-word delay lines 
DRn = double-length register n, ie the nth of two two-word delay lines 
Fn =  the nth arithmetic or logical function – see below for more details 
Cn = the nth wired-in constant. (The values, 0, -1, +1, 216 and 231 are provided). 
 

Given the above modern abbreviations, we can derive some control-signal names that 
refer to them.  From these signals we can then build up a simplified register-level diagram 
of the Pilot ACE.  Signal-names beginning with ‘S’ in Table 2.2 control the data fed to the 
‘source’ side of the highway in Figure 2.1.  Signal-names beginning with ‘D’ control the 
data fed to the ‘destination’ side of the highway in Figure 2.1.Names in red are associated 
with operations that are described later. 
 
Original 
Source 
number 

Modern signal 
name 

Original 
Destination 
number 

Modern signal 
name 

Original 
Next-
instruction 
number 

Modern signal 
name 

0 SF0 0 Instruction register 0 NM11 

1 SM1 1 DM1 1 NM1 

2 SM2 2 DM2 2 NM2 

3 SM3 3 DM3 3 NM3 

4 SM4 4 DM4 4 NM4 

5 SM5 5 DM5 5 NM5 

6 SM6 6 DM6 6 NM6 

7 SM7 7 DM7 7 NM7 

8 SM8 8 DM8   

9 SM9 9 DM9   

10 SM10 10 DM10   

11 SM11 11 DM11   

12 SDR1 12 DDR1   

13 SF1 13 DF8   

14 SDR2 14 DDR2   

15 SR1 15 DR1   

16 SR2 16 DR2   

17 SF2 17 DF9   

18 SF3 18 DF10   

19 SF4 19 DF11   

20 SR3 20 DR3   

21 SF5 21 DF12   

22 SF6 22 (unassigned)   

23 SC1 23 DF13   

24 SC2 24 DF14   

25 SC3 25 DF15   

26 SR4 26 DR4   

27 SR5 27 DR5   

28 SC4 28 DF16   

29 SC5 29 DF17   

30 SF7 30 DF18   

31 (unassigned) 31 DF19   

Table 2.2. An interpretation of the Pilot ACE’s Source and Destination numbers as 
equivalent signals using modern terminology. 
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The implied notation of Table 2.2 is that SF0 – SF7 and DF 8 – DF19 are similar to op 
codes or function specifiers.  The actions of these signals is further explained in Table 2.3. 
 

Control 
signal 
name 

Approx. function Description of action 

SF0 INPUT Take a 32-bit row from the card reader as S 

SF1 ARITH SHIFT RIGHT Take DR2  / 2  (ie DR divided by 2) as S 

SF2  Take R4 as S 

SF3 ARITH SHIFT RIGHT Take (R4 / 2) as S 

SF4 ARITH SHIFT LEFT Take (R4 x 2) as S 

SF5 AND Take (R4 & R5) as S 

SF6 NEQ Take (R4 NEQ R5) as S (ie exclusive OR) 

SF7 TEST INPUT S ≠ 0  when last row of a card is in position 

DF8 ADD D DR2 := DR2 + S 

DF9 ADD R2 := R2 + S 

DF10 SUB R2 := R2 - S 

DF11 MPY Multiply (independent of S).  The product  
appears in DR2 (see note 1) 

DF12 SWITCH R3 MODE Set R3 either to be fed from M10 or to be 
treated as normal (see note 2) 

DF13 SWITCH DR2 MODE Set DR2 either as two single-length registers 
or one double-length register (see note 2) 

DF14 JLT Branch on sign of S (see note 3) 

DF15 JNZ Branch on whether S is zero (see note 3) 

DF16 OUTPUT Transfer a 32-digit row to a card (ie the card punch) 

DF17 HOOT Send a pulse to the console hooter 

DF18 PREPARE CDP Commence punching a card (see note 4) 

DF19 PREPARE CDR Commence reading a card (independent of S) 

Table 2.3.  Description of the arithmetic and logical functions controlled by SF0 to 
SF7 and DF8 – DF19 of Table 2.2. 
 
Notes on the functions in Table 2.3. 
Note 1: Prior to the multiplication of two quantities p, q, p must be sent to R3, q must be 
sent to the odd half of DR2 and zero sent to the even half of DR2.  When this has been 
done, any instruction with destination D = 19 will activate the multiplication process.  The 
double-length answer appears in DR2.  However, if one or both p, q are negative, a 
correction must be built up in R2 by the programmer after activating the multiplication 
process (and therefore overlapped in time with the multiplication process). 
 
Note 2:  F12 and F13, which allow a programmer to modify the respective working modes 
of registers R3 and DR2, also use the value specified by the characteristic bits in the 
current instruction. If, for F12, the characteristic is an odd number then R3 ceases to have 
an independent existence and is fed continuously from M10.  This means that Source 20 
then gives the contents of M10 one word later than from Source 10.  R3 only returns to its 
normal existence if F12 is issued with an even characteristic.  For F13, an odd 
characteristic causes DR2 to behave as if it were two single-length registers.  This mode 
persists until F12 is issued with an even characteristic. 
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Note 3:  The two possible destination instructions must be located in consecutive 
addresses in the main memory. For the JLT function, the first-occurring instruction is taken 
if the value of the source-operand is positive or zero; the second-occurring instruction is 
taken if the value is negative.  For the JNZ function, the first-occurring or second-occurring 
instruction is taken depending upon whether the value of S is zero or non-zero. 
 
Note 4: The card reader (CDR) is activated to read a card by the F19 function, following 
which the function F0 is used to transfer each row, where a row is regarded as a 32-bit 
number.  The card punch (CDP) is activated in readiness to punch a card by the F18 
function, following which the function F16 is used to transfer each row (regarded as a 32-
bit number) to the device.    Both F18 and F19 are independent of the value of S.  Both F0 
and F16 are always used with the GO digit = 0, normally signifying that the computer will 
halt until a manual switch has been pressed on the console.  However, with F0 and F16 
the CDR and CDP effectively take the place of the manual switch, such that the computer 
halts during F0 and F16 until the respective input/output device is ready to transfer a row 
of information.  In this manner, the high-speed computer is made to keep pace with the 
relatively slow input/output activity at appropriate points in a program.  
 
Given the signal-names of Table 2.2, we can now draw a register-level diagram of the Pilot 
ACE which shows the main data highways for a sub-set of the total facilities. 
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Figure 2.1. Simplified diagram of the Pilot ACE, using the control signals defined in 
Table 2.1. The diagram shows the main data highways and a small sub-set of the 
Pilot ACE’s functionality. 
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The register-level diagram of DEUCE is similar to that shown above, except that the 
signal-notation has been rationalised.  The DEUCE facilities are described more fully in 
section N1X3.   
 
 
 
4. System diagram of DEUCE. 
An original DEUCE register-level diagram, taken from reference 7 (see section N1/X5), is 
given on the next page.  Note that the signal names on the switches are the English 
Electric ones rather than modern names.  For a fuller understanding of these original 
signal-names, refer to Table 3.1 in section N1X3.  Note also that the diagram on the 
following page is not intended to be precise.  Rather, it simply gives an indication of how 
data is routed along the DEUCE internal highways during various DEUCE instructions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             
        …. (continued) … 
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